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ABSTRACT:

We address the reconstruction of 3D CAD models from point cloud data acquired in industrial environments, using a pre-existing 3D

model as an initial estimate of the scene to be processed. Indeed, this prior knowledge can be used to drive the reconstruction so as

to generate an accurate 3D model matching the point cloud. We more particularly focus our work on the cylindrical parts of the 3D

models. We propose to state the problem in a probabilistic framework: we have to search for the 3D model which maximizes some

probability taking several constraints into account, such as the relevancy with respect to the point cloud and the a priori 3D model, and

the consistency of the reconstructed model. The resulting optimization problem can then be handled using a stochastic exploration of the

solution space, based on the random insertion of elements in the configuration under construction, coupled with a greedy management

of the conflicts which efficiently improves the configuration at each step. We show that this approach provides reliable reconstructed

3D models by presenting some results on industrial data sets.

1 INTRODUCTION

1.1 Context

3D CADmodels of industrial environments such as power plants,

oil and gas refineries or pharmaceutical installations are used to

serve several purposes: simulation of maintenance operations,

training, etc. Some of these applications require the 3D models

to match precisely (up to one centimeter) the actual geometry of

the facility they represent. Such models are called ”as built” mo-

dels and are usually constructed from 3D point clouds. In our

case, the point cloud P that we use come from terrestrial LI-

DAR acquisitions. The 3D CAD models which are considered

here are CSG models made of simple primitive shapes such as

planes, cones, tori and cylinders, that are truncated and assem-

bled. Each primitive shape is a parametric entity defined by its

position, orientation and some other geometric parameters inher-

ent to its type.

Besides the point cloud P , we consider that an a priori 3D CAD

model M0 is also available. While the point cloud describes

the actual state of the scene to be reconstructed, the a priori

3D model stands for a theoretical state of the facility : it is a

rough estimate of the solution we are searching for (cf. Figure 1a).

However, there may be some significant differences betweenM0

and the actual scene represented by P : some elements ofM0

may be present in the facility at a different place, with a different

orientation or with a slightly different geometry. Moreover, the

number of primitive shapes required to describe the whole actual

scene may be different from the number of shapes inM0. In-

deed, some elements ofM0 may be missing or duplicated in the

facility. Inversely, some components in the facility may have no

match inM0. The a priorimodelM0 can be an existing generic

3D representation of the site (a 3D model that describes the struc-

ture of a typical facility), but it can also come from the ”as built”

reconstruction of another facility which looks like the one to be

processed.

We focus our work on the reconstruction of right circular cylin-

ders parts, because many shapes in industrial environments are

cylindrical and such components are very frequently used in pip-

ing and equipment design. Moreover, recognized cylinders can

be subsequently used as key constraints for the detection of other

shapes (especially tori and cones).

Hence given P andM0, we aim at constructing a reliable 3D

model X made of cylinders, such that :

• X fits well to P : each cylinder is close to its points,

• each cylinder of X matches a cylinder fromM0 : we con-

sider that the cylinders which are to be reconstructed must

appear inM0 up to some specified change tolerances, so as

to provide reliable results,

• X is consistent : the connections between its cylinders are

relevant with respect to the constraints observed in industrial

facilities. These connections constraints are also some kind

of a priori knowledge about the scene to be reconstructed,

besides the modelM0.

Our contributions to the reverse engineering field are the expres-

sion of a new probabilistic framework for this reconstruction prob-

lem, as well as a new approach to perform the optimization stated

in this framework. Our method introduces the ideas of checking

the reconstructed model consistency and guiding the reconstruc-

tion by using the a priori 3D model. Hence, the reconstructed

model does not only fit well to the point cloud, but is also relevant

with respect to the industrial environments constraints, which is

usually not guaranteed by existing approaches, and its similarity

with the a priori 3D model can also be ensured.

1.2 Related work

To our knowledge, the work of (Bosché, 2010) is the only reverse

engineering approach that uses a priori CAD models as an initial

estimate of the point cloud to be reconstructed. The 3D model

is fitted to the point cloud using a registration approach based on

the ICP algorithm, which is only supposed to converge when the

data to be registered are close enough. So this approach cannot

handle significant changes.



(a) input point cloud P and

a priori modelM0

(b) computed configuration X (c) segmentation with our

approach

(d) segmentation with a

RANSAC algorithm

Figure 1: Reconstruction results on an industrial dataset. The a priori 3D model (grey in Figure (a)) has 626 shapes, among which

there are 391 cylinders, and presents some obvious differences with respect to the point cloud (red: 990323 points). Most of the

cylinders in the a priori model are not present in the point cloud. The computed configuration (grey in Figure (b)) has 68 cylinders,

and the corresponding segmentation is shown in Figure (c): each segment is displayed with its own random color. These results can be

compared with the segmentation provided by the algorithm of (Schnabel et al., 2007) shown in Figure (d).

(Schmittwilken and Plümer, 2010) also use strong prior infor-

mations such as the size of windows to classify distinct parts

of building facade, but their work is very specific to the facade

parts classification problem, although interesting ideas could also

be used in another context. There also exists some researches

that drive the surface reconstruction from point clouds by using

prior knowledge (Pauly et al., 2005, Jenke et al., 2006, Gal et

al., 2007). These works use 3D meshes to model the surfaces

whereas we would like to build the scenes with primitive shapes,

which gives a level of representation more adapted to the targeted

applications.

Two approaches are widely used to handle the shapes recogni-

tion problem : the Generalized Hough Transform (GHT) and the

RANdom SAmple Consensus (RANSAC) algorithm. The GHT

is a vote based-approach: each point votes for a set of shapes in

a discretized parametric space, and the shapes whose associated

parametric description correspond to a peak of votes can be con-

sidered as present in the point cloud. The main drawback of this

method, when naively used, is its prohibitive complexity since the

whole shape parametric space must be scanned (5 dimensions for

the cylinder). The complexity can be lowered in the case of the

cylinder by resolving some parts of the problem in lower dimen-

sions spaces (Rabbani and Van Den Heuvel, 2005). This method

provides nice results on part of industrial scenes, but the detection

of accurate cylinders with different sizes (especially the smallest

ones) in large scenes remains challenging. The RANSAC algo-

rithm (Fischler and Bolles, 1987) is a stochastic approach which

consists in randomly picking minimal points sets fromwhich can-

didate shapes are built. Without improvement, most of the gene-

rated candidates are not relevant and the number of trials that is

required to find a correct shape can be huge. (Schnabel et al.,

2007) propose an efficient algorithm that decreases the minimal

number of trials that ensures shapes recognition. The authors also

provide statistical tools that speed up the score computation of

candidate shapes. This approach has shown good results on the

data sets we have tested, although there are still some precision

issues that lead to irrelevant shapes.

We finally would like to mention the work of (Fisher, 2004) that

points out the interest of using a priori knowledge in the reverse

engineering process, so as to provide high quality results. The

authors notably propose to take shapes relationships into account,

by adding constraints in the localized shape fitting problem.

1.3 Overview

The use of a prior knowledge lends itself quite well to the Baye-

sian formulation (Diebel et al., 2006) of the reconstruction prob-

lem which states this task as the research of the most probable

configuration (cf. Section 2.2). The underlying probability must

be defined to set the requirement that we want the reconstructed

model to fulfill. Therefore we propose a probability that embeds

several kinds of constraints (cf. Section 2.3), such as the quality

of the fitting to the point cloud, the similarity with the a priori 3D

model and the quality of the connectivity between shapes in the

configuration.

Once the probability has been defined, we have to find an effi-

cient way to compute the optimal configuration among the huge

and complex set of possible solutions. For that purpose, we pro-

pose a new iterative optimization approach based on the stochas-

tic exploration of the configuration space (cf. Section 3.1). A

candidate cylinder is randomly generated at each step, in order

to insert it into the configuration. As its insertion may decrease

the probability of the current configuration, we propose a greedy

method to handle conflicts with the cylinders already included

in the configuration: the candidate cylinder is accepted if it in-

creases the probability once the conflicts have been resolved. We

also present a cylinder generation algorithm that favors the rele-

vant cylinders appearing, by using both P andM0 to guide the

random generation (cf. Section 3.2).

2 A PROBABILISTIC APPROACH

2.1 Introduction about data and notations

Let P =
{

(p
0
, n0) , . . . ,

(

pn−1
, nn−1

)}

be a point cloud that

stands for the actual state of a facility. Each pair
(

pj , nj

)

∈ P

consists of a 3D point pj and its associated normal vector nj ,

which can either be provided with LIDAR data or computed us-

ing a local plane fitting approach (Mitra and Nguyen, 2004). The

a priori 3D CAD modelM0 =
{

C0, . . . , Cm−1
}

is a set of



primitive shapes, among which we only consider right circular

cylinders. Each cylinder C considered in this paper is truncated

and defined by its center of mass cC , its axis direction aC , its

radius rC and its length lC . We aim at finding the most proba-

ble configuration X = {C0, . . . , Cx−1}, in which each Cj is a

cylinder.

2.2 Reconstruction as an optimization problem

Considering the reconstruction problem from the probabilistic

point of view, we are searching for the configuration that maxi-

mizes some posterior probability π(.) which is proportional, up

to some constant normalization factor, to the product of a Data

likelihood term PD and a Prior term PP according to the Bayes

rule:

π(X|P,M0) ∝ PD(P|X ,M0)× PP (X|M0) (1)

”∝” stands for the proportionality relation : the constant norma-

lization term is not involved in the optimization problem.

PD(P|X ,M0) is in fact independent ofM0 since P does not

depend on M0. It quantifies how well P fits to X , whereas
PP defines some prior density over the whole space of possible

configurations. We have to ensure that the prior term PP favors

consistent configurations and takes the similarity withM0 into

account. Using the densities:

PD(P|X ) = e −λD.ED(X ,P)
(2)

PP (X|M0) = e −EP (X ,M0) (3)

we have to find the configuration X that minimizes the energy:

E(X ,P,M0) = − log(π(X|P,M0))
= λD.ED(X ,P) + EP (X ,M0)

(4)

where λD specifies the relative importance of the data fitting en-

ergy ED with respect to the prior energy EP .

From equations 2 and 3, we can see that the Data fitting energy

ED measures the quality of fitting of P to X , while the Prior

energy EP measures the compliance of X with the a priori ex-

pectations.

2.3 Energies formulation

2.3.1 Data fitting term Given a threshold ǫ which corre-

sponds to an estimate of the noise in P , we define the data fitting

energy ED as follows:

ED(X ,P) =
1

n

∑

Ci∈X

∑

p∈P

eD(Ci, p) (5)

remind n is the number of elements in P . If d (Ci, p) (shorte-
ned dip) is the distance between p and Ci, then we define eD as

follows:

eD(Ci, p) =















(

d
i
p

ǫ

)2

− 1 if dip < ǫ and dip = min
Ck∈X

d
k
p

ωD if ǫ ≤ dip ≤ 3ǫ
0 otherwise

(6)

Any point p that falls into a cylinder medium-range neighborhood

[ǫ, 3ǫ] brings a constant positive penalty ωD . Otherwise, if the

point is close enough to a cylinder, it brings a negative energy

which tends to its minimum (−1) as the distance between the

point and its closest cylinder decreases. The points that do not

meet one of these two cases do not contribute to the energy. This

measurement encourages cylinders to be close to their matching

points, but it also penalizes those that do not fulfill an emptiness

constraint in their medium-range neighborhood.

2.3.2 Prior term The prior density quantifies the relevancy

of X regardless of P . It induces a probability over the whole

configuration space, and thus defines the relevancy of any con-

figuration based on a priori criteria. The two main criteria we

introduce in the reconstruction process are the following: a con-

figuration is likely if its elements connect well one to each other,

and if it ”looks like” the initial estimateM0 up to some specified

tolerances σA, σR and σC . Therefore it is quite natural to split

the prior energyEP into two separated terms: a Topological term

ET that handles objects connectivity, and aGeometrical termEG

that handles the similarity withM0:

EP (X ,M0) = λT .ET (X ) + λG.EG(X ,M0) (7)

where the factors λT and λG modulate the relative importance of

each term.

We define EG element-wise: each cylinder of X is compared

with its most likely match inM0 and brings the corresponding

energy:

EG(X ,M0) =
∑

Ci∈X

min
Cj∈M0

eG(Ci, C
j) (8)

where eG splits into three terms (one for each of the main cylinder

parameters):

eG(Ci, C
j) = e

A
G(Ci, C

j) + e
R
G(Ci, C

j) + e
C
G(Ci, C

j) (9)

The angular term eAG decreases as the axes directions align:

e
A
G(Ci, C

j) =

(

arccos(|aCi
· aCj |)

σA

)

2

(10)

The radius term eRG decreases as the radii tend one to the other:

e
R
G(Ci, C

j) =

(

rCi
− rCj

σR.rCj

)

2

(11)

The position term eCG decreases as Ci position gets closer to Cj

axis:

e
C
G(Ci, C

j) =

(

‖(cCi
− cCj )× aCj‖

σC

)

2

(12)

In the above expressions, ”·”, ”×” and ”‖ ‖” respectively denote

the usual scalar product, cross product and Euclidean norm inR3.

The topological energy ET is much more complex because the

set of connections that should be encouraged and those that should

be penalized is harder to define. We make the following assump-

tions based on expert knowledge:

• the axes of two connected cylinders should ”intersect”,

• connected cylinders should have a negligible overlapping

volume,

• the angle between two connected cylinders should be either

right (90◦) or flat (0◦),

• the connections involving two cylinders with the same ra-

dius are relevant, although connections between two cylin-

ders with different radii are not forbidden (e.g. T-junctions).

Thus the energy ET does not depend onM0, and is defined as



the sum of connections energies:

ET (X ) =
∑

(Ci∈X , Cj∈X), i 6=j

eT (Ci, Cj) (13)

With:

eT (Ci, Cj) =







0 if Ci doest not intersect Cj
gτ (Ci, Cj) if 0 < V (Ci ∩ Cj) <

1

2

ωT if 1

2
≤ V (Ci ∩ Cj)

(14)

V (Ci ∩ Cj) is the maximum between the proportion of Ci volume

intersecting Cj and the proportion of Cj volume intersecting Ci.
It can be grossly approximated using a Monte Carlo approach:

a few hundreds of points are randomly picked in each cylinder,

and we count the proportion of these points that falls into both

cylinders simultaneously (the maximum of the two resulting pro-

portions is kept). This way, overlapping cylinders can be strongly

penalized using the positive constant ωT . The cylinders that do

not intersect are not taken into account for the topological energy

computation. When the cylinders connection seems to be rele-

vant, we define an energy that favors connections which fulfill

the remaining requirements mentioned above (axes intersections,

right angles, similar radii):

gτ (Ci, Cj) = g
L
τ (Ci, Cj) + g

R
τ (Ci, Cj) + g

A
τ (Ci, Cj) (15)

Again, we have three distinct terms handling several constraints.

As the cylinder center cCi
(resp. cCj

) and its axis direction aCi

(resp. aCj
) define a 3D line, and provided a distance function

d
(

(cCi
, aCi

) ,
(

cCj
, aCj

))

between two 3D lines, the axis inter-

section constraint is quantified by the following energy:

g
L
τ (Ci, Cj) = 3− 4

(

3

4

)

(

d
(

(cCi
, aCi

) ,
(

cCj
, aCj

))

τ ×min
(

rCi
, rCj

)

)

2

(16)

where τ is a tolerance ratio specified by the user.

The angular term gAτ favors right or flat angles (negative energy)

while disadvantaging other angles (positive energy):

g
A
τ (Ci, Cj) = 3− 4

(

3

4

)

(

arccos(|aCi
· aCj
|)

a

)2

−4

(

3

4

)

(

arccos(|aCi
· aCj
|)− π

2

a

)2

(17)

a being an angular tolerance specified by the user.

Eventually, the radius term gRτ favors connections where the in-

volved cylinders have the same radius, and is quite neutral when

radii are different. For that purpose, we consider that the radii

difference should not be much greater than the ǫ parameter intro-

duced in section 2.3.1:

g
R
τ (Ci, Cj) = −e

−
1

2

(

rCi
− rCj

ǫ

)2

(18)

The terms gLτ and gAτ define hardcore constraints: when one is not

fulfilled, the corresponding energy tends to its upper bound (3),
and the sum gτ is turned into a positive penalty because each of

the two other terms is greater than -1. This explains why we use

the values 3 and 4 in Equations 16 and 17, although they could

be substituted for an other pair (γ, γ + 1), as long as γ > 2.

3 RESOLUTION

3.1 Greedy optimization

We have to generate some configuration X that minimizes the

energy E (cf. Section 2.2), but we do not precisely know be-

forehand how many cylinders there are in X . Usual numerical

optimization tools can hardly handle such a task.

In (Descombes et al., 2008, Lafarge et al., 2010), the authors

solve similar problems by using approaches based on time re-

versible Markov chains in a simulated annealing scheme. Indeed,

the configurations space can be explored by randomly jumping

from a configuration to a new one, each jump being the inser-

tion or the removal of a random element (”birth and death” ap-

proach), and randomly accepting these transitions depending on

the energy evolution. This process stands for a reversible Markov

chain whose stationary distribution corresponds to the energy to

be minimized, which ensures the convergence of the process to

the global optimum.

As far as we are concerned, we think that the generation of an ele-

ment (cylinder) should be driven by the available knowledgeM0

(cf. Section 3.2). The blind generation of a cylinder by uniformly

sampling its parameters would cause the resolution to take a pro-

hibitive time, since such a cylinder is unlikely to optimize the

energy. But by introducing a bias in the birth kernel, we do not

ensure the time reversibility of the resultingMarkov chain. Hence

there is no guarantee about the process convergence. Moreover,

the simulated annealing algorithms rely on a cooling schedule

whose role is critical in the convergence, and which requires the

user to specify additional parameters, which is really difficult for

someone who has not a deep knowledge of it.

Algorithm 1 Greedy energy minimization algorithm

Require: P: point cloud to be reconstructed

M0: 3D model, gross estimate of P

Ensure: X fits to P , ”looks like”M0 and is consistent

1: X ← ∅
2: repeat

3: for all Ci ∈M0 do

4: Randomly build a cylinder C from P using Ci

5: X ∗ ← X ∪ {C} , E0 ← E(X ∗, P, M0)
6: compute the set K of cylinders in X that intersect C
7: sort K in decreasing eT (C, Cj ∈ K) order
8: K∗ ← ∅, Q ← ∅
9: for all Cj ∈ K do

10: Q ← Q∪ {Cj} , Ej ← E(X ∗ −Q, P, M0)
11: if Ej < E0 then

12: E0 ← Ej , K∗ ← K∗ ∪Q
13: end if

14: end for

15: if E0 < E(X , P, M0) then
16: X ← X ∗ −K∗

17: end if

18: end for

19: until X has not been changed

Therefore instead of using a probabilistic minimization algorithm,

we propose a greedy minimization method (Algorithm 1) based

on the stochastic exploration of the solution space : the decision

whether a transition should be accepted or not is taken in a de-

terministic way, so as to minimize E at each step. When a new

cylinder C is generated (cf. Section 3.2), we try to insert it in

the configuration X . This insertion may increase the energy al-

though C may be a perfect candidate, due to conflicts with some

cylinders in X . Therefore before taking any decision, we have



to resolve these conflicts. Let K ⊂ X be the set of cylinders

intersecting C. We have to find the subset K∗ ⊂ K that mini-

mizes E(X − K∗ ∪ {C} , P, M0), i.e. the optimal removal of

conflicting cylinders. Theoretically, we should test all the parts

of K to find K∗. To avoid combinatorial explosion, we use a

greedy heuristic: the cylinders inK whose topological energy eT
against C is high are removed first. By removing the conflicting

cylinders in this order, we can keep track of the set which gets to

the smallest energy in a time which is proportional to |K∗| ins-

tead of 2|K
∗|. Finally, once the conflicts have been resolved, the

cylinder is accepted only if it decreases the energy.

3.2 Cylinders generation

In our case, an estimate of the solution we are searching for is

available: this a priori knowledgeM0 can be used to generate

relevant cylinders from the point cloud, and thus increase the

convergence rate of the optimization process. Given a cylinder

Ci ∈ M0, we can build a candidate cylinder using a RANSAC-

like algorithm:

1. use the a priori cylinder Ci to locate the area where the can-
didate is going to be generated:

(a) take a first point q
0
close to Ci, using a rejection test:

randomly pick points until the current one is close enough

to Ci and its normal is relevant with respect to Ci,

(b) shift q
0
along its normal vector n: c ← q

0
± rCi .n.

Then take the spherical neighborhood of c with a radius

proportional to rCi . We use KD-Trees to handle such

queries,

2. build a candidate from a non-minimal points set:

(a) among the selected neighbors, choose κ that are likely

to lie on the same surface as q
0
. This likelihood can

be estimated using a computation of the local cylinder

axis based on the Gaussian map (Rabbani and Van Den

Heuvel, 2005), then projecting the points into a plane

orthogonal to this axis, and performing a circle detec-

tion among projected neighbors (using a RANSAC al-

gorithm for instance). The probability for each neighbor

to be picked is then computed based on the distance of

its projection to the detected circle with respect to the

expected noise ǫ.

(b) build the cylinder C that minimizes the mean square dis-

tance to the κ selected points. The length of this cylin-

der is computed using its ǫ-inliers in P (points whose

distance to C is smaller than ǫ).

This algorithm randomly generates relevant cylinders that tend to

”look like” the input cylinder Ci (thanks to step 1), and fit well

to P (step 2). Indeed, we use Ci parameters to drive the points

selection step. And since the point selection process is reliable,

we can build cylinders from many points (we use κ = 20), while
usual RANSAC algorithms use minimal sets of points (2 to 7). It

makes the generation step more precise and robust against noise

and normals uncertainties. Thus, the probability for a cylinder

to be generated increases as its energies ED and EG decrease.

Moreover, the set of cylinders that can be built with this method is

finite and countable, and its cardinality is bounded by the number

of parts of P having κ elements. In particular, the cylinders

that do not minimize the mean square distance to κ points of P

have a zero probability to be generated. So the proposed method

defines a probability triple over the cylinders space, with a finite

countable set of events having a non-zero probability, and it can

be used for the efficient exploration of the solution space in order

to solve the Bayesian problem stated in this paper.

4 RESULTS

4.1 A few words about the parameters setting

We have introduced several parameters in the previous sections.

Some of them have to be specified by the user, since they bring

knowledge about the problem that could hardly be computed.

Thus ǫ specifying the noise in P , σA, σR and σC specifying

uncertainties about the initial estimate M0, and the weighting

parameters λD , λG and λT have to be set by the user at the begin-

ning of the algorithm. However, it is difficult to set the energies

weights λD , λG and λT , and some approach that automatically

estimates these parameters would be helpful.

Some other parameters can either be guessed based on assump-

tions, or can be set regardless of the input data P andM0. For

instance, a topological tolerance τ = 0.1 can be used : in any

case, the distance between connected cylinders axes should not

exceed a tenth of the smaller cylinder radius (cf. equation 16),

and a = 5◦ should also be convenient for most cases (cf. equa-

tion 17). Assuming that at most 10% of any cylinder inliers

may lie into the medium-range neighborhood, we propose to set

ωD = 12. Finally, setting ωT = 4 enables the removal of over-

lapping cylinders even if they have up to 4 perfect connections

with some other cylinders, which should be sufficient in many

scenes (otherwise the greater ωT , the better).

4.2 Results on industrial scenes
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Figure 2: Evolution of the energies during the reconstruction

process, for the dataset presented in Figure 1. Here, we use the

weighting coefficients λD = 0.1, λT = 0.7 and λG = 0.2.

We present the results that we got on an industrial dataset shown

in Figure 1, in order to prove the ability of our method to gen-

erate consistent model from LIDAR data. We use an a priori

3D model which is roughly registered with the point cloud (the

greatest registration errors are about 10 cm), and which is differ-

ent from the 3D point cloud: some pipes are missing, and other

ones are significantly modified (reoriented and shifted). There-

fore we use permissive change tolerances: σA = 30◦, σR = 0.2
and σC = 3.5 m. The reconstructed configuration contains pipes

that were initially missing, as well as those that were displaced.

Moreover, we can see that it is consistent: its cylinders are well

connected, and there are no undesirable overlaps. It also fits quite

well to the point cloud. Another interesting aspect of this algo-

rithm is that it enables the reconstruction of a large variety of

cylinders: we observe that it detects cylinders of radius 10 mm as

well as a cylinder of radius 2300 mm, although the detection of

the smallest elements is not very precise because their radii are

smaller than the specified noise (here, we use ǫ=30 mm).

The evolution of the energies during the resolution process is

shown in Figure 2. It takes about 140000 iterations (by iteration,

we mean a generated candidate) for the algorithm to converge

(about 1700 seconds with a 2.4 GHz processor).



We also compare our approach with a reference RANSAC algo-

rithm (Schnabel et al., 2007) which detects tori, cylinders, planes

and spheres without using any prior knowledge, and which is

faster than ours (about 30 seconds to perform the detection). The

segmented cylinders are shown in Figure 1d, but we do not con-

sider the other shapes handled by the RANSAC algorithm. We

can see by comparing the segmentation results that our approach

manages to correctly detect the biggest cylinders, whereas the

RANSAC algorithm detects several pieces of overlapping shapes

(many colours standing for a single cylinder), especially for the

cylinder at the center of the scene. The following table shows a

few comparisons between the RANSAC method (we only con-

sider cylinders) and our approach. We can see that our method

works better in fitting the cylinders to their points (second line),

as well as in avoiding conflicts between shapes (fourth line) and

optimizing the distribution of points on the shapes surfaces (third

line).

RANSAC Bayesian

Amount of cylinders 42 68

Average distance to ǫ-inliers 14.58 mm 10.12 mm

Average amount of points per

surface unit

21,18

points/dm2

25,81

points/dm2

Points that simultaneously match

more than one cylinder

5.67% 0.85%

Finally, we have run our point cloud reconstruction approach with

a part of the a priori 3D model (Figure 3). As expected, the al-

gorithm manages to find only the parts that match the incomplete

input CAD model.

Figure 3: Reconstruction from a partial 3D model. As it searches

for a model that is similar to the a priori (green), our approach

only retrieves the appropriated parts (grey) in the point cloud

(red). We use the same parameters as for the scene in Figure 1.

5 CONCLUSION

We have stated the reconstruction problem as the search of a 3D

CADmodel that fulfills several requirements, among which some

are based on a priori knowledge. We have more particularly fo-

cused our approach on the use of an existing 3D CAD model

which roughly describes the scene we aim at reconstructing. This

a priori knowledge is used to improve the reliability of recon-

structed models. Indeed, the existing reconstruction techniques

mostly deal with the quality of fitting to the input point cloud,

whereas the Bayesian formulation that we propose allows us to

embed higher level constraints, such as the consistency of the re-

sulting model or the compliance with the a priori CAD model.

Moreover, we use the a priori CAD model to focus the recon-

struction on parts of the scene that we know to be relevant.

The posterior probability that we have proposed define the three

requirements we want the reconstructed model to fulfill. Besides,

we have proposed a new approach which searches for the opti-

mal model with respect to this probability. This approach has

shown good results on the industrial datasets that we have tested

so far: the resolution method actually provides solutions that have

high probabilities (low energy), and the resulting CAD models fit

well to the point clouds, their shapes are well connected and each

shape actually matches one from the a priori CAD models.

To conclude, we think that our approach could be extended to

other kind of shapes, such as planes. But handling the com-

ponents interactions gets much more complex as the number of

shape types increases.
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